Synthesis and Structure Determination of the New Compound La $\sim_{\sim 10.8} \mathbf{N b}_{5} \mathrm{O}_{20} \mathrm{~S}_{10}$

Christine Boyer-Candalen ${ }^{1}$ and Alain Meerschaut
Laboratoire de chimie des Solides, Institut des Matériaux Jean Rouxel, UMR 6502, 2 rue de la Houssinière, B.P. 32229, 44322 Nantes Cedex 03, France

Received October 14, 1999; accepted February 24, 2000

Abstract

$\mathrm{La}_{\sim 10.8} \mathrm{Nb}_{5} \mathrm{O}_{20} \mathrm{~S}_{10}$ was obtained in an attempt to prepare the La homologue of the $\mathrm{Sm}_{3} \mathbf{N b O}_{4} X_{3}$ derivatives ($X=\mathrm{S}$, Se). Its structure was solved by X-ray diffraction on a single crystal, in the Immm space group with cell parameters $a=32.535(8) \AA$, $b=12.115(3) \AA$, and $c=3.9999$ (3) \AA. Refinement of 58 parameters using 836 unique reflections with $I>2 \sigma(I)$ converged to $R_{1}=5.09 \%$ and $w R_{2}=10.87 \%$. The structure of $\mathrm{La} \sim{ }_{10.8} \mathrm{Nb}_{5} \mathrm{O}_{20} \mathrm{~S}_{10}$ can be schematically described as the stacking of [$\mathrm{La}_{2} \mathrm{~S}_{2}$] slabs of rock salt type (two-atom-thick layers) pillared by an intricate assembly of La and Nb polyhedra along the a-direction. Within this complex part, one of the La sites (La5) is partially occupied. © 2000 Academic Press

Key Words: crystal structure, quaternary oxysulfide of $\mathbf{N b}$ and La.

INTRODUCTION

Very few layered oxychalcogenides are known (1) as compared with either layered oxides (see for instance the highT_{c} superconductors) or layered chalcogenides (e.g., the binary dichalcogenides of transition metals or the related ternary 2D misfit chalcogenides). Among the known quaternary oxychalcogenides of Ln (rare earth metal) and M (transition metal), the structure of $\mathrm{Sm}_{2} \mathrm{Ti}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}(2,3)$ was described, in a simplified manner, as the "intergrowth" of a sulfide layer $\left[\mathrm{Sm}_{2} \mathrm{~S}_{2}\right.$] of rock salt type and an oxide layer [$\mathrm{Ti}_{2} \mathrm{O}_{5}$] of ReO_{3} structure type; such a 2D structural description does not fit the reality of the chemical bondings considering the short interlayer $\mathrm{Sm}-\mathrm{O}$ and $\mathrm{Ti}-\mathrm{S}$ connections.

A partial or a total filling of the central site within the ReO_{3}-type part leads to the parent perovskite type, generally related to oxide compounds for which interesting physical properties such as high- T_{c} superconductivity, ferroelectric behavior, giant magnetoresistance, ... are often found.

[^0]The rock salt (RS)-type layer was observed for sulfide (4, 5) or oxide $(6,7) 2 \mathrm{D}$ misfit derivatives as well as for many other oxychalcogenide derivatives (see for instance the $L n_{2} \mathrm{O}_{2} X$ series (8)). This RS-type structure can also be present as small isolated fragments within the structure as observed for the $\mathrm{Sm}_{3} \mathrm{NbO}_{4} X_{3}(X=\mathrm{S}$ (9), $\mathrm{Se}(10))$, or as pieces of intersecting planes that delimit 1 D channels of squared section, as illustrated by $\mathrm{Nd}_{16} \mathrm{Ti}_{5} \mathrm{~S}_{18} \mathrm{O}_{17}$ (11).

It then appears that the two types of anions ($X^{- \text {II }}$ and $\mathrm{O}^{-\mathrm{II}}$) are always segregated, their preferential combination with this or that metal element being determined by the relative oxo/chalcophilicity of metal atoms. We report the structure determination of a new oxysulfide compound $\mathrm{La}{ }_{\sim 10.8} \mathrm{Nb}_{5} \mathrm{O}_{20} \mathrm{~S}_{10}$ which shows a rock-salt-type layer $\left[\mathrm{La}_{2} \mathrm{~S}_{2}\right]$ pillared by a complex structural entity.

EXPERIMENTAL

1. Synthesis and Chemical Analysis

In the effort to get the La homologue of the $\mathrm{Sm}_{3} \mathrm{NbO}_{4} X_{3}$ derivatives ($X=\mathrm{S}$, Se), a mixture of $\mathrm{La}_{2} \mathrm{O}_{3}$ with $\mathrm{La}_{2} \mathrm{~S}_{3}$ and $\mathrm{Nb}_{2} \mathrm{O}_{5}$ was weighted in a $1: 2: 1$ ratio, respectively. The starting materials were loaded into a silica tube sealed under vacuum ($p=2 \times 10^{-2} \mathrm{~atm}$). The temperature of the furnace was progressively increased $\left(10^{\circ} \mathrm{C} / \mathrm{h}\right)$ to $400^{\circ} \mathrm{C}$ and maintained for 24 h . The temperature was then again increased $\left(10^{\circ} \mathrm{C} / \mathrm{h}\right)$ to $1000^{\circ} \mathrm{C}$ and maintained for 5 days. The cooling down to room temperature was done at $30^{\circ} \mathrm{C} / \mathrm{h}$. The major product of the reaction is a mixture of black and red powders. The semiquantitative chemical analysis using an EDS-equipped scanning electron microscope revealed that the powders, made of very small platelets, contain $\mathrm{La}, \mathrm{Nb}, \mathrm{S}$, and O. The approximate ratios, not considering oxygen atoms, are $2 \mathrm{La} / 1 \mathrm{Nb} / 3 \mathrm{~S}$ for the black phase, and $2 \mathrm{La} / 1 \mathrm{Nb} / 2 \mathrm{~S}$ for the other one. The small dimensions of the platelets do not permit an X-ray single-crystal study of these phases.

Another phase (?) crystallizing as small yellow needleshaped (parallelpiped) single crystals, also stable in air, was chemically analyzed. The EDS results averaged on three
different crystals reveal the presence of oxygen and gave for La, Nb, and S the approximate $2: 1: 2$ ratio, quite comparable to results for the "red powder". This phase, which corresponds to the title compound, was investigated by the X-ray diffraction technique. The calculated values (atomic percentages) for non-oxygen atoms deduced from the structure refinement are 41.79 (40.2), 19.40 (19.4), and 38.80 (40.4), respectively (average experimental values in parentheses).

2. Symmetry and Unit Cell Parameters

Preliminary X-ray crystal investigation with the use of a Weissenberg camera indicated that this compound crystallizes with an orthorhombic symmetry. Systematic absences ($h k l, h+k+l=2 n$) are indicative of an I-centering condition. A needle-shaped crystal with dimensions $0.01 \times 0.03 \times 0.25 \mathrm{~mm}^{3}$ was mounted on an Enraf-Nonius CAD4 diffractometer using Mo $K \alpha$ radiation $(\lambda=0.7107 \AA$). Final unit cell parameters were determined from a leastsquares analysis of setting angles of 23 reflections, in the range $11.8^{\circ}<2 \theta<53.8^{\circ}$, that were automatically centered with the CAD4 diffractometer (CELDIM option). From a refinement with the constraints $\alpha=\beta=\gamma=90^{\circ}$, one obtains $a=32.535(8) \AA, b=12.115(3) \AA$, and $c=3.9999(3) \AA$.

3. Structure Refinement

A total of 10081 reflections were collected in the θ range $1.5-40^{\circ}(-55<h<55,-20<k<20,0<l<7)$. The data were corrected for Lorentz-polarization and for absorption (faces indexed). The systematic absences are consistent with the space groups $I 222$ (No. 23), $I 2_{1} 2_{1} 2_{1}$ (No. 24), Imm2 (Im2m, I2mm) (No. 44), and Immm (No. 71) (see Table 1 for data collection and refinement conditions). The good agreement among Friedel pairs allowed us to select the centrosymmetric space group (Immm). The positions of the La and Nb atoms were determined by direct methods with the program SHELXTL (12). The positions for the S and O atoms were determined from subsequent difference Fourier calculations. In the first step, the refinement was done without absorption correction and led to the R factors $R_{1}=9.96 \%$ for $835 F_{\mathrm{o}}>4 \sigma\left(F_{\mathrm{o}}\right)$ and $R_{1}=16.61 \%$ for 1382 (all data), 41 variables. Correction for absorption effects slightly improved the reliability factor $R_{1}=9.66 \%$, but the isotropic displacement parameter for one lanthanum atom (La5), as well as for one oxygen atom (O8), remained rather high. Therefore, the site occupancy factor (s.o.f) of the La5 atom was refined first. A better solution ($R_{1}=6.18 \%$) was obtained for a partial occupancy of this La5 site (around 39%).

Going further by refining the s.o.f. of the O 8 site $\left(0,0, \frac{1}{2}\right)$, and by adding an extra O 9 atom $(0,0,0)$ that issues from a difference Fourier calculation does not improve the refinement. More, the O 9 site should also be partially occupied

TABLE 1
Crystal Data and Structure Refinement Details for $\mathrm{La}_{\sim 10.8} \mathbf{N b}_{5} \mathrm{O}_{20} \mathrm{~S}_{10}$

Crystal Data	
Empirical formula	$\mathrm{La} \sim{ }_{10.8} \mathrm{Nb}_{5} \mathrm{O}_{20} \mathrm{~S}_{10}$
Symmetry	Orthorhombic
Space group	Immm
Cell parameters (A)	$\begin{aligned} & a=32.535(8), b=12.115(3) \\ & c=3.9999(3) \end{aligned}$
Cell volume	1576.6(6)
Z	2
Temperature (K)	293(2)
Density ($\mathrm{g} \mathrm{cm}^{-3}$)	5.49
$\mu\left(\mathrm{mm}^{-1}\right)$	16.74
Crystal size	$\begin{aligned} & \approx 0.01 \times 0.03 \times 0.25 \text { bounded by } \\ & \text { faces }\{100\},\{010\},\{001\} \end{aligned}$
Absorption correction	Indexed faces
Max. and min. transmission	0.847-0.585
Data Collection	
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073 \AA)$
Diffractometer	Enraf-Nonius CAD4
Scan type	ω / θ
Range of h, k, l	$\begin{aligned} & -45 \leq h \leq 45,-17 \leq k \leq 17, \\ & 0 \leq l \leq 5 \end{aligned}$
θ range (deg)	1.79-30
Refinement	
All reflections	1382
No. of observed reflections ($I \geq 2 \sigma(I)$)	836
No. of refined parameters	58
Reliability factor $R_{\text {obs }} / R_{\text {all }}$	5.09\%/11.09\%
Residual electron density [max, min] (e \AA^{-3})	$7.10-3.66$

because of the too close proximity with the O 2 site (O2-O9~1.34 Å); this means that occupancies for both O 2 and O 9 sites have to be constrained $(1-x$ and $x)$ to exclude the simultaneous presence of O 2 and O 9 atoms. So, little by little, other site occupancies should also be refined when considering their surroundings, which will complicate the solution, and finally will not make sense. Finally, La and Nb atoms were refined anisotropically. The final cycle of the least-squares refinement gave agreement factors of $R_{1}=$ 5.09% for 836 reflections with $F_{\mathrm{o}}>4 \sigma\left(F_{\mathrm{o}}\right)$ and $R_{1}=$ 11.09% for 1382 unique reflections (2θ limit $=60^{\circ}$) using 58 parameters. A final difference Fourier map showed the largest peak $\left(+7.1 \mathrm{e}^{-} \AA^{-3}\right)$ for the $(0,0,0)$ position $(=\mathrm{O} 9)$, at $1.36 \AA$ from O2. Final values of positional parameters and equivalent displacement parameters are given in Table 2; anisotropic displacement parameters for La and Nb atoms are indicated in Table 3.

DESCRIPTION OF THE STRUCTURE

If one decides on a composite layered-type organization, it then becomes clearer that the structure of $\mathrm{La} \sim{ }_{\sim 10.8} \mathrm{Nb}_{5}$

TABLE 2
Atomic Positional Parameters, Isotropic Displacement Parameters (\AA^{2}), and Site Occupancy Factor (s.o.f.s) for $\mathrm{La}_{\sim 10.8} \mathrm{Nb}_{5} \mathrm{O}_{20} \mathrm{~S}_{10}$

Atom	Site	x	y	z	$U_{\text {iso, eq* }}$	s.o.f.
La1	$8 n$	$0.18822(3)$	$0.34081(9)$	0	$0.0049(2)$	1
La2	$4 e$	$0.19486(4)$	0	0	$0.0050(3)$	1
La3	$4 e$	$0.10280(5)$	$\frac{1}{2}$	$\frac{1}{2}$	$0.0064(3)$	1
La4	$4 h$	0	$0.21928(15)$	$\frac{1}{2}$	$0.0135(4)$	1
La5	$4 e$	$0.05516(11)$	0	0	$0.0061(12)$	0.386
Nb1	$8 n$	$0.12674(5)$	$0.16222(14)$	$\frac{1}{2}$	$0.0049(3)$	1
Nb2	$2 d$	0	$\frac{1}{2}$	0	$0.0210(10)$	1
S1	$8 n$	$0.05295(14)$	$0.6444(4)$	0	$0.0083(9)$	1
S2	$4 e$	$0.2172(2)$	$\frac{1}{2}$	$\frac{1}{2}$	$0.0069(12)$	1
S3	$8 n$	$0.21555(13)$	$0.1705(4)$	$\frac{1}{2}$	$0.0074(8)$	1
O1	$8 n$	$0.1390(4)$	$0.3166(9)$	$\frac{1}{2}$	$0.007(3)$	1
O2	$4 g$	0	$0.1126(18)$	0	$0.027(6)$	1
O3	$4 f$	$0.1441(5)$	0	$\frac{1}{2}$	$0.002(3)$	1
O4	$4 f$	$0.1427(5)$	$\frac{1}{2}$	0	$0.006(4)$	1
O5	$8 n$	$0.1390(4)$	$0.1557(10)$	0	$0.006(2)$	1
O6	$2 b$	0	$\frac{1}{2}$	$\frac{1}{2}$	$0.024(8)$	1
O7	$8 n$	$0.0731(5)$	$0.1426(12)$	$\frac{1}{2}$	$0.020(3)$	1
O8	$2 c$	0	0	$\frac{1}{2}$	$0.073(15)$	1

$\mathrm{O}_{20} \mathrm{~S}_{10}$ can be schematically described as the stacking of RS layers pillared by an intricate assembly of La and Nb polyhedra, along the a-direction (see Fig. 1).

The RS part of this structure is very similar to that observed for $\mathrm{Sm}_{2} \mathrm{Ti}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}$, i.e., a double [LaS] sheet where La atoms (La1 and La2) are nine coordinate with five S atoms from the [LaS] entity itself, and four oxygen atoms from the apexes of the adjacent entity. This corresponds to La atoms in a monocapped square antiprismatic coordination environment (Figs. 2a and 2b), with average La1-S and La2-S distances of 3.003 and $2.935 \AA$, respectively; the corresponding La1-O and La2-O distances are equal to 2.586 and $2.607 \AA$, respectively. Detail of the various $\mathrm{La}-(\mathrm{O} / \mathrm{S})$ distances is given in Table 4. The RS-type layers are separated by a complex structural arrangement constituted by all the Nb polyhedra and the $\mathrm{La} 3, \mathrm{La} 4$, and La 5 polyhedra.

TABLE 3
Anisotropic Displacement Parameters (\AA^{2}) for $\mathrm{La}_{\sim \mathbf{1 0 . 8}} \mathrm{Nb}_{5} \mathrm{O}_{\mathbf{2 0}} \mathrm{S}_{10}$

Atom 1	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
La1	$0.0066(5)$	$0.0052(5)$	$0.0028(5)$	$0.0010(4)$	0	0
La 2	$0.0058(8)$	$0.0062(6)$	$0.0031(8)$	0	0	0
La 3	$0.0085(7)$	$0.0062(6)$	$0.0045(7)$	0	0	0
La 4	$0.0068(7)$	$0.0254(9)$	$0.0083(9)$	0	0	0
La 5	$0.0020(18)$	$0.0092(20)$	$0.0069(22)$	0	0	0
Nb 1	$0.0070(7)$	$0.0050(7)$	$0.0027(7)$	$-0.0014(7)$	0	0
Nb 2	$0.0067(16)$	$0.0120(17)$	$0.044(3)$	0	0	0

La
Nb
S
O

FIG 1. Projection of the structure of $\mathrm{La}{ }_{\sim 10.8} \mathrm{Nb}_{5} \mathrm{O}_{20} \mathrm{~S}_{10}$ onto the (a, b) plane. The $\left[\mathrm{La}_{2} \mathrm{~S}_{2}\right]$ slabs are distinguished.

In contact with the $\left[\mathrm{La}_{2} \mathrm{~S}_{2}\right]$ slab, one observes the Nb 1 and La 3 polyhedra. Nb 1 is in a distorted octahedral coordination (Fig. 3a), with only one S apical atom (S3) at a rather long distance ($2.891 \AA$), and five O atoms ($\mathrm{O} 1, \mathrm{O} 3,2 \mathrm{O} 5$, and O7) with a very short Nb1-O7 distance ($1.762 \AA$ A, see Table 4). Such a small $\mathrm{Nb}-\mathrm{O}$ distance ($1.762 \AA$) has never been reported to our knowledge; a short one, $\mathrm{Nb}-\mathrm{O}=1.811 \AA$, is mentioned for $\mathrm{La}_{3} \mathrm{NbSe}_{2} \mathrm{O}_{4} \mathrm{~F}_{2}$ (13). La 3 is in a square antiprismatic coordination of four O and four S atoms (Fig. 2c), with La3-O distances ranging from 2.385 (with O4) to $2.513 \AA$ (with O1), and La3-S1 distance equal to $3.111 \AA$ A. $\mathrm{Nb} 2, \mathrm{La} 4$, and La5 polyhedra are located in the central zone of the complex part. The Nb 2 atom is coordinated to two O atoms (O6) and four S atoms (S 1) in an octahedral arrangement (Fig. 3b). The $\mathrm{Nb}(2) X_{6}$ octahedron shares a common edge S1-S1 with the La4 polyhedron. Atom La4 sits in a monocapped square antiprismatic site (Fig. 2d) surrounded by four $\mathrm{S}(4 \mathrm{~S} 1)$ and five $\mathrm{O}(2 \mathrm{O} 2,2 \mathrm{O} 7,1 \mathrm{O} 8)$ atoms, with O8 being the capping atom. The La5 atom is coordinated to oxygen atoms only ($4 \mathrm{O} 7,2 \mathrm{O} 2$, and 2 O 8) in

FIG 2. Environments around (a) La1, (b) La2, (c) La3, (d) La4, and (e) La 5 atoms.
a square antiprismatic environment (Fig. 2e). The two La5-O2 distances $(2.255 \AA)$ are much shorter than the six other ones ($2.687 \AA$ with O8, and $2.706 \AA$ with O7). The La5 site is partially occupied ($\sim 39 \%$) as revealed by the

FIG 3. Environments around (a) Nb 1 , and (b) Nb 2 atoms, respectively.
structure refinement. The reason for this is not clear, but in any case, it could be partly related to the short La5-La5 contact ($3.589 \AA$). We have even considered the presence of niobium (Nb 3) instead of lanthanum (La5); this led to quite similar R values, with a higher s.o.f. ($\sim 58 \%$), but that solution was bad from a charge equilibrium point of view: indeed, a bond valence of +1.5 was calculated for an Nb site.

We have also to recall that a residual peak located at $(0,0,0)(=\mathrm{O} 9)$, close to La5 $(1.794 \AA)$, appeared in the difference Fourier map. We have not taken into account this feature because that led us to refine the s.o.f. of the too close O 2 atom, and then the other neighborings. The O 7 atom which is engaged in a short Nb1-O7 distance is also shared with La4 and La5 atoms. The partial occupancy of the La5 site is probably at the origin of the intricate situation in that localized part.

Given the crystallographic composition $\mathrm{La}_{\sim 10.8} \mathrm{Nb}_{5}$ $\mathrm{O}_{20} \mathrm{~S}_{10}$, charge balance requires $\mathrm{La}(+\mathrm{III})$ and $\mathrm{Nb}(+\mathrm{V})$ to

TABLE 4
Main Interatomic Distances (A) for Each La and Nb Polyhedron for $\mathrm{La}_{\sim 10.8} \mathrm{Nb}_{\mathbf{5}} \mathrm{O}_{\mathbf{2 0}} \mathrm{S}_{\mathbf{1 0}}$

Atom 1	Atom 2	Distance	Bond valence	Atom 1	Atom 2	Distance	Bond valence
La1	O4	2.431(11)	0.50	La4	$2 \times \mathrm{O} 2$	2.381(12)	2×0.57
La1	$2 \times \mathrm{O} 1$	2.580(8)	2×0.33	La4	$2 \times \mathrm{O} 7$	$2.553(15)$	2×0.36
La1	O5	$2.756(12)$	0.21	La4	O8	2.657(2)	0.27
La1	$2 \times$ S2	2.934(2)	2×0.45	La4	$4 \times \mathrm{S} 1$	3.114(4)	4×0.28
La1	$2 \times \mathrm{S} 3$	3.008(4)	2×0.37			total	3.25
La1	S3	3.134(5)	0.26	La5	$2 \times \mathrm{O} 2$	$2.255(14)$	2×0.8
		total	3.27	La5	$2 \times \mathrm{O} 8$	2.687(3)	2×0.25
La2	$2 \times \mathrm{O} 3$	2.593(10)	2×0.32	La5	$4 \times$ O7	$2.706(10)$	4×0.23
La2	$2 \times \mathrm{O} 5$	$2.620(12)$	2×0.30			total	3.02
La2	S2	2.862(7)	0.55				
La2	$4 \times$ S3	2.953(4)	4×0.43	Nb1	O7	1.762(16)	1.49
		total	3.51	Nb1	O1	1.912(12)	0.99
La3	$2 \times \mathrm{O} 4$	$2.385(9)$	2×0.56	Nb1	$2 \times$ O5	2.041(2)	2×0.7
La3	$2 \times \mathrm{O} 1$	2.514(12)	2×0.40	Nb1	O3	2.045(5)	0.7
La3	$4 \times$ S1	3.113(4)	4×0.28	Nb1	S3	2.891(5)	0.24
		total	3.04			total	4.82
				Nb2	$2 \times$ O6	2.0000 (2)	2×0.79
				Nb2	$4 \times$ S1	$2.455(5)$	4×0.80
						total	4.78

compensate $\mathrm{S}(-\mathrm{II})$ and $\mathrm{O}(-\mathrm{II})$ as no short $\mathrm{S}-\mathrm{S}$ bonding is present. Bond valence calculations confirm well these assumptions (see Table 4).

ACKNOWLEDGMENTS

The authors thank the referees for their comments and suggestions; we totally agree with one of the referees about the calculation of s.o.f. for the two mutually excluding O 2 and O 9 sites. In addition, we particularly thank him for his suggestion about the $\mathrm{Nb} 3 / \mathrm{La} 5$ substitution that we did not retain in our previous investigations because of the too short $\mathrm{Nb} 3-\mathrm{O} 9$ contact $(\sim 1.79 \AA)$. Although no significant lowering of the R value is obtained from refinement, this hypothesis has the advantage of giving $\mathrm{Nb}(\mathrm{V})$ only (which is in agreement with the transparent yellow color), and an oxidation state around + III for La5; this does not hold for a niobium atom in this site $(\ll+$ III in the absence of O 9$)$.

REFERENCES

1. M. Guittard, S. Benazeth, J. Dugué, S. Jaulmes, M. Palazzi, P. Laruelle, and J. Flahaut, J. Solid State Chem. 51, 227 (1984).
2. C. Boyer, C. Deudon, and A. Meerschaut, C. R. Acad. Sci. Paris 2 IIc, 93 (1999).
3. M. Goya, R. Seshadri, V. Ksenofontov, P. Gütlich, and W. Tremel, Chem. Commun. 979 (1999).
4. G. A. Wiegers and A. Meerschaut, in "Materials Science Forum," Trans Tech Pub (A. Meerschaut, Ed.), Vols. 100 \& 101, p. 101, 1992.
5. G. A. Wiegers, Prog. Solid State Chem. 24, 1 (1996).
6. Ph. Boullay, R. Seshadri, F. Studer, M. Hervieu, D. Groult, and B. Raveau, Chem. Mater. 10, 92 (1998).
7. M. Hervieu, Ph. Boullay, C. Michel, A. Maignan, and B. Raveau, J. Solid State Chem. 142, 305 (1999).
8. W. Wichelhaus, Naturwissenschaften 65, 593 (1978).
9. C. Boyer-Candalen, A. Meerschaut, and P. Palvadeau, Mater. Res. Bull., in press (2000).
10. A. Meerschaut, C. Boyer, A. Lafond, L. Cario, and J. Rouxel, J. Solid State Chem. 137, 122 (1998).
11. C. Boyer-Candalen, C. Deudon, and A. Meerschaut, J. Solid State Chem., in press (2000).
12. G. M. Sheldrick, SHELXTL, version 5; Siemens Analytical X-ray Instrument Inc., Madison, WI, 1994.
13. T. D. Brennan, M. F. Mansuetto, and J. A. Ibers, J. Solid State Chem. 107, 547 (1993).

[^0]: ${ }^{1}$ To whom correspondence should be addressed. Fax: 0240373995 . E-mail: Christine.Boyer@cnrs-imn.fr.

